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Methods for Computing and Modifying 
the LDVFactors of a Matrix 

By Philip E. Gill, Walter Murray and Michael A. Saunders 

Abstract. Methods are given for computing the LDV factorization of a matrix B and 

modifying the factorization when columns of B are added or deleted. The methods 

may be viewed as a means for updating the orthogonal (LQ) factorization of B with- 

out the use of square roots. It is also shown how these techniques lead to two nu- 

merically stable methods for updating the Cholesky factorization of a matrix follow- 

ing the addition or subtraction,respectively, of a matrix of rank one. The first method 

turns out to be one given recently by Fletcher and Powell; the second method has 

not appeared before. 

1. Introduction. Any m x n matrix B of rank m (m < n) has an LQ factoriza- 
tion of the form B = [L 0] Q, where L is a nonsingular lower-triangular matrix and Q 
is orthogonal (QTQ = QQT = 1). The columns of L and the first m rows of Q are 
uniquely defined, apart from sign. Let Iii be the diagonal elements of L and let a diag- 
onal matrix D = diag(dl, d2, ..., dn) be defined by 

i 2ix i = 1, 2, ... . m, 

i= m + 1,...,n. 

An LDV factorization of B may then be written in the form B = [L O]DV, where L 
and V are defined in terms of L, Q and D by the equations 

[L O]D12 [L O] D1/2V= Q. 

The diagonals of L are unity and the rows of V are orthogonal. The following relations 
are easily proved: 

(la) VVT = D- 1, 
(lb) VTDV = I. 

Henceforth we shall use the notation L for both L and L above, since it will always be 
clear from the context whether or not L has a unit diagonal. 

In this paper we derive methods for computing the LDV factorization of a matrix 
and methods for modifying the factorization when columns are added and deleted. The 
resulting methods are described in Sections 3 and 4 and may be applied imrnediately to 
the Simplex method for linear programming. The motive for working with LDV factors 
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rather than LQ factors is that square roots are eliminated and the amount of computa- 
tion and storage is reduced. 

In Section 5 we show how these results lead naturally to two methods for com- 
puting the Cholesky factors L and D of the matrix LDLT = LDLT ? uzzT for some 
vector z and scalar a. The method for the case a > 0 turns out to be one given by 
Fletcher and Powell (1973), while the method for the case a < 0 has not appeared be- 
fore. 

The keynote to this work is the construction of LQ factors for two elementary 
matrices of the form 

[ 1 and I-qqT 

for given vectors p and q, where J1q112 = 1. The special structure of these factors is 
given in the Appendix. Although the derivation of the recurrence relations involved is 
relatively complicated, we emphasize that the recurrence relations themselves are very 
simple. 

1.1. Notation. We shall use the notation M = M(p, i, 'y) to denote a special 
lower-triangular matrix constructed from the vectors p, ,B and -y according to 

O, i<j, 

Mij=esi = j, 

Ppjp, i>j. 

If the diagonal elements of M form the vector e = (1, 1, ..., 1)T we shall write either 
M = M(p, P, e) or just M = M(p, 1). 

The notation luvll will always mean the 2-norm Vlull2= (VTV)l12 of a vector v, and 
a diagonal matrix D with diagonals di (i = 1, 2, . . ., n) will be written D- 

diag(dl, d2, * , dn)- 

2. LDV Factors. We have defmed in Section 1 what will be called a proper LDV 
factorization of a general rectangular matrix B. For later use the notion needs to be 
generalized in the following way. Suppose that L is unit lower triangular, D is a diag- 
onal matrix with positive diagonal elements, and V is a matrix such that 

(2) B = [L O]DV. 

If there exist nonsingular diagonal matrices D1 and D2 such that the matrix Q D1 VD2 
is orthogonal (unitary), then we shall call (2) an LDV factorization of B. (In other 
words we require that V can be transformed into an orthogonal matrix by simple row 
and column scaling.) 

We now define (2) to be a proper LDV factorization in the event that 

D1 =D1/2 and D2 =I, 

in which case Q = D1/2 V and the relations 
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VVT = D- 1 and VTDV = I 

hold as stated in Section 1. 
We shall be particularly interested in the case where some of the columns of B 

are null. Matrices B of this kind will always arise in such a context that they are expres- 

sible in a form LDV such that, corresponding to each Bei which is null, Lei = e1, Ve1 = 

e1, e)TV. = e;T and De,=O, where e1 is the jth column of the identity matrix. If D+ = 

diag(d+, d+, ..., d+) is defined by 

d+=|di, di > , 

d 1, d -O 

then the relations VVT - (D+)-1 and VTD+ V = I hold in place of (1). It should be 
emphasized that when several columns of B are null, the LDV factorization is far from 

unique; the particular form of the factorization LDV described above will arise in a 

natural way in the algorithms we describe. 

3. Computing the LDV Factorization of an m x m Matrix B. Let A be a matrix 

made up of j columns of B and m - j columns of the zero matrix (initially we shall 

not specify any particular ordering of the columns of A), and assume that the LDV 
factorization of A, denoted by A = LDV, is known. We shall describe a method for 

computing the LDV factors of the matrix A obtained by replacing a zero column of 

A by a new column b. This technique leads naturally to a method for computing the 

LDV factorization of B since, if Bo denotes the zero matrix with factorization Bo = 

LODO VO, where Lo = I, Do = O and VO =I, the columns of B can be added one by 
one to BoI 

From our remarks in Section 2, the diagonal matrix associated with the factoriza- 

tion A = LD V has m - j zero elements and V has m - j columns of the identity matrix 

Let p be the vector such that Lp = b, and Ps the first element of p such that Ps * 0 

and d5 = 0. Define 

A = A + beT 

(that is, the column b is added into the sth position). The recurrence relations we shall 

derive are invalid if Ps = 0. However, if B is nonsingular it can be shown that there 

exists at least one 1pj > 0 (otherwise the new column is a linear combination of those 

that have already been processed). Using the LDV factorization of A, we have 

A =LDV+ bes =L(DV+ pes). 

By definition, the sth row of V is es, giving 

(3) A-L(D + peT)V. 

From Theorem A2 we have that the LDV factorization of D + peT is of the form 

(4) D + pe[T=LDV, 

where 
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P201 

P3 31 P3(2 1 

(5) L - Pfsl Ps t2 PsIA3 1 
Ps+191 Ps+192 Ps+l1P3 * Ps+ 3s 1 

Ps+2131 Ps+2f2 Ps+2P3 * Ps+ 2 Ps 0 1 

Pmil Pm(2 PmS3 PmPs 0 0 1 

1-13p1P 

- 32P1 1 -32P2 12 

- 3P1 - 3P2 1-3P3 (3 

(6) v= . . * * 
- ospl -PsP2 -1PsP3 Ps 

O 0 0 

000 0 0 . 0000 1 

D = diag(dl, d2,* dm) 

= diag(dl,d2, ds- 19_l ds, ds+l *, fdm), 

and the matrix (+)l1/2' (D+)-l/2 is orthogonal. The vectors d and ,B are generated 
by the following recurrence relations: 

(i) defime to = 1; 
(ii) for k = 1, 2, ... , s - 1 compute the following: if dk = 0, then set vk = 0, 

otherwise set Vk = Pkldk, tk = tk-1 + VkPk, dk = dktkltk -1 (3k = Vkltk; 
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(iii) define d5 = p/lt 1 and 1 = l/p,. 
Substituting (4) in (3) gives A = LLDVV. From the orthogonality of (D+)1 V/ 
we have 

+% ) l'T=( (7) - D)-V ( 

Now 

(j7Jy)( VJ)T = i?VVTi7T - V(D+)-f1VT =(D ), from (7). 

Consequently, if we write VV= V, D = D and LL = L, then we have a factorization 
of A of the form required. 

By adding each column of B in turn and using the results just obtained we can 
generate a product form of the factorization (2). As the factorization proceeds, a new 
element of the diagonal matrix D becomes nonzero and a new column of L and column 
of V are defined. Let D1, Vj and L, denote the matrices D, V and L defined at (4) 
which are associated with the matrix made up of f columns of B. Then we have 

B-LiL2 LmDmVm * V2V1, 

or B =LDV, if we write L = L1L2 * Lm. V= Vm*- V2V VandD =Dm. 
The important feature of the matrices L, and V, is that they both can be con- 

structed from the pair of vectors p and ,B. We shall show in Section 4.1 how their 
special form can be exploited to obtain the solution of equations of the form L1y = z 
and products of the form y = V-z. 

3.1. Stability and Sparseness Considerations. The general algorithm just given 
could be numerically unstable if the columns of B were added in random order. Just 
as with LU factorization, some "pivoting" strategy is required to ensure that the new 
column at each stage has a sufficiently large pivot element (p3 above). A preliminary 
ordering of the rows and columns of B would reduce the amount of column inter- 
changing required. In the context of linear programming, the preassigned pivot pro- 
cedures of Hellerman and Rarick (1971, 1972) would be useful. 

In general, the purpose of preassigned pivot procedures is to rearrange the rows 
and columns of an arbitrarily sparse matrix before the factorization commences in 
order to reduce the subsequent storage requirements. In mathematical terms we seek 
permutation matrices P1 and P2 such that the fill-in during the solution of the equa- 
tions P1BP2y = P1b, is less than that during the solution of Bx = b. The solution x 
can be obtained from y using x = P2y. One useful rearrangement of B, in view of the 
factorization being considered, is to choose P1 and P2 such that P1BP2 is of the form 

(8) _ 

L2 
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This matrix is lower triangular except for the matrix B, defined as a bump. The lower- 
triangular matrices L1 and L2 are known as the forward triangle and backward triangle, 
respectively. Hellerman and Rarick (1971 and 1972) have given two algorithms for 
determining a further reordering of the matrix B. These algorithms give a matrix P1BP2 
as in (8) together with a matrix B which is itself lower triangular save for further bumps 

Bly B 2 . .., B, (there may be any number), each of which is lower triangular save for 
columns of nonzero elements called spikes. For example, a bump B, could be of the 
form 

x * x 
* x x 

(9) B1= x * x x 
* x x 
* x x * x x 

x x * x x 

with x denoting the nonzero elements. Our example has spikes in the fourth and last 
columns. 

If we apply the LDV factorization to a matrix which has been obtained by apply- 
ing the Hellerman and Rarick scheme to B, then significant savings in fill-in are achieved. 
In this case, corresponding to a nonspike column, the L, is an elementary matrix and 
the V is an identity matrix with its jth diagonal element replaced by 1/:X. The number 
of nontrivial V.'s is equal to the number of spike columns. 

Rather than computing the LDV factors of B directly, there is an alternative strat- 
egy which maintains numerical stability and at the same time improves the sparsity of 
the factors. It is: 

(1) compute a triangular factorization B = LU, using Gaussian elimination with 
column interchanges to preserve stability; 

(2) use the above algorithm to compute an LDV factorization of U. In this case 
it is natural to add the columns of U in order from left to right. 

The final result is a factorization of B in the form 

B-=LU = LLiL2 LmDm Vm Vm-l i*V 

Note that since U is upper triangular the elements p,+ 1 ... Pm are zero for each 
factor Ls. 

This strategy has been implemented and tested on some medium-scale linear pro- 
grams. The procedure P3 (Hellerman and Rarick (1971)) was used to specify an initial 
row and column ordering for B. (In practice only a few additional column interchanges 
are then required to ensure stability in the L U factorization.) The recurrence relations 
defining the LU factorization of P1BP2 imply that fill-in occurs only in the spike col- 
umns. For example, the LU factorization of (9) is of the form 
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x . . x * x 

* x * * . . * x * * * x 

x * x * * * x x * x 

* * ..x x * * * * * x * x 

* x x x x * * * * * x x 

x x * x x x . . . . * x 

The important facts are that 
(a) the bulk of the LU factorization is in L, and 
(b) U is almost strictly diagonal (except for the spikes). 
In practice we find that there is virtually no further fill-in in the spike columns 

during the LDV factorization of U. To summarize, this means that for a general sparse 
matrix B (of the type encountered in LP) it is possible to compute an orthogonal fac- 
torization B = LDV in product form, whose density is only slightly greater than that 
of the triangular factorization B = LU. This is a surprising result. 

4. Adding and Deleting Columns of B. When combined, the two theorems in this 
section show how the LDV factors of a nonsingular square matrix B can be modified 
when one column of B is replaced by a new column. 

THEOREM 1 (ADDING A COLUMN). Let B be an m x m nonsingular matrix and 

let the m x (m + 1) matrix [B 0] have a proper LDVfactorization [B 0] = [L O]DV, 
where L is unit lower triangular, D = diag(d1, d2, ... ,dm, 1) and D1 /2 V iS orthogona, 
If a column aS is added to B to give the matrix B, then B has a proper LD V factoriza- 
tion B = [B as] = [L O]DV, with 

L = LM, D = diag(d1, d2, ..., dm os), V = VV, 

where 

Lp = as, M=M(p,y ), N=M(p,f 3j-ppT, v= [pT j2 

and D' /2 V iS orthogonal. The quantities d1, i3 and a i are defined by the following 
recurrence relations: 

10(i) define to = 1; 
10(ii) for j = 1, 2, ... , m set 

(I10) ti = tj_1 + i 2d 

di 
= 

ditjltj_ 

-= p1/(d1t1); 
1O(iii) define a2 = 1/tm. J 

Proof. Adding the column to B gives 

(1 1) BB= [B 0? +a e+ - [L O]DV+ Lpe7 +1 = [LO] (Dv + ?[1eT+) 
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where p is the solution of Lp = a,. JNow D112 V is orthogonal and the last column of 
[B 0] is zero; hence D1/2 V is really of the form 

D' /2V = [Q 1] 

where Q is the orthogonal matrix in the LQ factorization of B itself. Since d /l2 1 
this means that eT V = eT +T . Substituting into (I1) gives 

B = [L 0] (D+ [0] e+1) V= [L OILDVr= [L O]DV, 

where we are now using the corollary of Theorem A2 to write down an LDV factoriza- 
tion of D + [P] eT . Using the notation of the corollary of Theorem A2,we have 

(a) LO] = [L OIL = [L oT 1 = [LMO, 

so that 

(b) L=LM; D=D; 

(c) V= VV. 

The structure of V, M and N and the recurrence relations (10) also follow from the 
corollary of Theorem A2. Finally we have 

D1 /2 VF = --1/2 -VV = (D1)l/2 V-1 /2)(Dl1/2 V), 

where both parenthesized quantities are orthogonal matrices. It follows that D15/2iV is 
orthogonal and the theorem is proved. 0 

THEOREM 2 (DELETING A COLUMN). Let B be an m x (m + 1) matrix with a 

proper LDVfactorization B = [L O]DV, where L is unit lower triangular, D = 

diag(dl, d2, ... , dm, a2) is positive definite and D1/2 V is orthogonal. If B is the 
matrix remaining after the rth column ar is deleted from B, then B is nonsingular, and 
[B 0] has a proper LDV factorization [B 0] = [L 0] DV, with 

L = LM,D = da(dl I d231 . . m 311), V =VN 

where 

L]= DVer, M =M(P, O), V 2T T1 [l = a permutation matrix 

and D1 /2 V iS orthogonal. The quantities d1 and Pi are defined by the following recur- 
rence relations: 

12(i) define tm+l = a2/lt2 

12(ii) for j = m, m - 1,..., 1 set 

(12) + ?/di = dt1l pjt, 

di djtj.+ l Iti, 
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Proof. If Hl is the permutation matrix which interchanges columns r and m + 1 

of B, we have the identity 

(13) [B O] = (B-areT)Hi. 

Also, if we compute the rth column of DV as [4' I = DVer we have 

ar = Ber = [L O]DVer = [L O] 

and 

er = VT [P 

since VTDV = I from (lb). Substituting for ar and er in (13) gives 

[B O] = [L O] (D - [aI[PTI)VH 

Now from the definition of p and a2 we have IID- 112 [ p ] 11 = lQ1/2 Ver = 1 since 
/2 V iS~~~~~~~2 D112 V iS orthogonal. Hence the conditions of Theorem A4 are satisfied and we can 

write down an LDV factorization of D - [p] [PT a?2] to give 

[B O] = [L O]LDVVHf [L O]DV. 

Using the notation of Theorem A4,we have 

(a) [LO] = [L O]L= [L T 0 [LM 01, 

so that 

(b) L=L M; D=D; 

(c) V= VV. 

The structure of V and M and the recurrence relations (12) also follow from Theorem 

A4. Finally we have 

12V = /2 VVH = (D112V 1 /2)(D1 12 V)(H), 

where all parenthesized quantities are orthogonal matrices. It follows that D1 /2 V iS 

orthogonal and the theorem is proved. 
Note also that the last row of D 1/2 V iS 

eM+D1 2V = e7+1Dll2VVH = eM+1VVH =T 2 VH 

=eT VTDVH= eT = emT+1 

and hence jl /2 F is of the form 

i /2 V-1] 
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where Q is the orthogonal matrix in the LQ factorization of B. El 
Theorems 1 and 2 imply that when a column of B is replaced by a new column 

we can extend the product form of Section 3 by adding new factors Lm + 1, Vm + i 

Lm + 2 Vm + 2 and updating Dm to become Dm + 2. 
4.1. Use of the Special Matrices M and V. The matrices M = M(p, ,B) in Theorems 

1 and 2 will be used to solve systems of the form 

My=z or MTy=z. 

Algorithms are given in Saunders (1972) which show that y can be computed using two 
multiplication operations for each nonzero element in p. Similarly the matrices V in 
Theorems 1 and 2 will be used to compute products of the form 

y= Vz or y= VTz, 

and it is easy to show that y can again be computed using only two multiplies per non- 
zero element in p. 

5. Modification of the Cholesky Factors. This section is concerned with the mod- 
ification of the Cholesky factors of a symmetric positive-definite matrix A after a rank- 
one correction. In mathematical terms, the problem is to compute the Cholesky factors 
LDlET such that 

(14) LDLT = A = A + ?ZZT = LDLT + ? ZZT. 

It will be assumed throughout that the elements d1 and d1 are positive, which 
implies that the matrices A and A are positive definite. We shall scale the vector z 
such that the modification (14) is either of the form 

(15) LT = LDLT + vvT, 

or 

(16) LTLT = LDLT - vvT. 

Although this scaling requires an additional n divisions and a square root, it minimizes 
the probability of overflow/underflow on the occasions when a is large and llzll is small. 

Since A is positive definite, it can be written in the form A = BBT, where B is a 
nonsingular m x m matrix. If B has the proper LDV factorization B = LDV, then L 
and D are the Cholesky factors of A. The two methods given in 5.1 and 5.2 for per- 
forming the modifications (15) and (16), respectively, are based upon the theorems given 
in the appendix for modifying the LDV factorization of B without storing V. 

5.1. LThT = LDLT + vvT. We have the identity 

(17) A =L(D+ppT)LT, 

where p is the solution of the equations 

(18) Lp = v. 

We can now apply Lemma A3 to write down the LDLT factors of D + ppT as 
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D + T MDMT 

where M = M(p, ,B)and D = diag(dl, ..., din) can be computed using the recurrence 

relations 

19(i) define to = 1; 
19(ii) for'j = 1, 2, ... , m set 

(19) tp=t,1 ?pJ/d1, 

dj = dt1/tj 1X 

f3j = pj/(djtj). 

Clearly the required Cholesky factors are given by L = LM and D = D. These recur- 
rence relations for computing (3j and d, are identical to those given by Fletcher and 
Powell (1973) although they have been derived in a different way. 

The special structure of the matrix M enables the product LM to be efficiently 

computed in terms of the 3, using the following forward recurrence relations suggested 

by Gill, Golub, Murray and Saunders (1974): 
(i) define v(1) = Lp; 
(ii) for j = 1, 2, ..., m set 

(20) ~ ~ U+1)= V4') -pl. (20) u(i) - r-Pilri i=j + 1, M. 

The vector v(1) needed to initialize the recurrence relations is known, since v(l) = 

Lp = v. Also, each of the vectors v(i) (j = 1, 2, ... , m) can be obtained during the 

jth stage of the initial forward substitution (20) since 

Vr =: 'riPi = Vr- , riPi, r = j,j + 1, ..., m. 
i=j i=l 

We note also that, using the expression for v(i+ 1), we can rearrange the equation 
for Ir; in the form 

ri= IrI + f3(v' P,lr,) = (1 - P113)1r1 + f3zv(4) 

(21) = (dj/dj)lrj + 13vrW). 

This method requires 3m2/2 + 0(m) multiplications to completely update the factors, 
whereas only m2 + 0(m) are required using (19) with (20). 

Rounding-error analysis of the recurrence relations (19) and (20) and of (19) and 

(21) have been carried out by Fletcher and Powell (1973). This analysis shows that 

the corresponding rounding errors involve a term with coefficient dl/d1 and d1/d1, respec- 

tively. The recurrence relations (19ii) indicate that d, > di for all j; and, consequently, 
the formula (21) should be used to obtain the new factor, since the term dl/d1 has a 

damping effect on the error. The resulting algorithm has the unsatisfactory feature that 

an additional m2/2 multiplications are required. However, Gentleman (1973) has sug- 
gested using formula (20) until the ratio dl/dj exceeds a certain fixed quantity. It has 
been observed in practice that the amount of work for this modified process is still ap- 
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proximately m2 ? O(m) since large values of dl/d1 are only likely to occur on one or 
two occasions during a single updating. For example, if dk/dk exceeds the bound, only 
m - k additional multiplications are required. 

In summary, the algorithm for performing the modification (15) is given by 

(i) define to = 1, Vl) = v; 
(ii) for j = 1, 2, ... , m compute 

tj=t_l+ pj31d, p1 = dt/j 
=j tj- ?I /I1 

di =pldi tit 

if dl/d1 > 4, then set 

iri (t 1/ j)rj r ? 
r + 1, ... 

. m 

otherwise set 

=i1 U4) - p11 
- 

j=irj?f 4(i+ 1) [ r=j?1,...,m. 

5.2. LDLT = LDLT - vVT. In this case, instead of (17) we have 

(22) A = L(D - ppT)LT, 

where p satisfies (18). Consider the quantity ot2 = 1 - pTD- lp. From (22) we have 

det(A) = [det(L)] 2det(D - ppT). 

Since L is unit lower triangular det(L) = 1, and consequently 

det(A) = det(D - ppT) = 2det(D). 

Since by assumption A is positive definite, det(A) > 0 and a2 is positive. This 
implies that we can apply Lemma A4 to give the factorization D - pp = MDM using 
the recurrence relations: 

(i) define tm + 1- a 2 

(ii) for j = m, m - 1, ..., 1 set 

t=-j ? + p2/Id;, di=d1t1+ I/t1, Pi = - pl(d1t1+ 1) 

Since the elements of the vector j are computed in the order gm, gm -1' ..* 
it is convenient to compute the product LM using the backward recurrence relations: 

forj=m,m-1,...,l set 

V1) = pj) 

rj Iri PjVr 

(23) V) = V-i+ 1) +?p.l 
' r =j+ ?,.. ,m. 

In this case there is no need to consider an alternative recurrence relation for TrI 
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since, as mentioned earlier in 5.1, the error involved using a recurrence relation of the 

form (23) is multiplied by the factor dl/d1 and d, < d1 for all j. 

Unlike the recurrence relations for adding a rank-one matrix, the formation of 

L cannot take place during the computation of the vectors p and f since all of p must 

be known before the recurrence relations for 3 can commence. For this reason the con 

putation of the modified factors requires 3m2/2 + 0(m) multiplications. It is a feature 

of this method that, provided ac2 > 0, the modified matrix is positive definite regardless 

of any rounding errors made. 
The final algorithm to perform the modification (16) is thus as follows: 

(i) Solve the equations Lp = v and define tm+ I =l - pTD- lp; if tm + 1 < 0 

set tm+ 1 = , where c (e > 0) is the machine precision; 
(ii) for j=m, m - 1, ..., set 

tj= tj+1 ? Pi/d , 

di di ti Il/tj, 
/= pjl(djtj+ 1 

v(i) = Pj, 

'r, irj vr 
v(i) = ( +pl|, rj , .. ., m. 

Vr r jir 
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Appendix. Here we give the lemmas and theorems referred to earlier which develop 

the special structure of the following matrices: 

(a) the product P of certain sequences of elementary orthogonal matrices which 

reduce an n-vector z to a multiple of the unit vector en, thus: 

Pz = IIzIIen 

with P-=PPn lpn2 . . . P2P1 and P = P1]P2 * * - P n2P 1, where each P, is a plane 

rotation; 
(b) the LQ factors of matrices of the form 

[ 1] and I-qq (TIqII-1); 

(c) the LDV factors of matrices of the form 

L D 
] and D -qqT (ID-1/2q =ll 1) 

where D is a positive-definite diagonal matrix; 
(d) the Cholesky factors of matrices of the form 

D + ppT and D - ppT. 

LEMMA Al. Let z be an n-vector and P an orthogonal matrix such that 
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In particular, let P be the product of plane rotations 

(2) P = Pn-1 ***P2P1, 

where each Pi is a symmetric orthogonal matrix of the form 

1 

Pi = -c; si (rowj). 
1 

Si C1 

Equation (1) holds if the elements c; and s; are such that 

(3a) [7 clJEpZ1] [pJ' 

where 

(3b) p2 pi2 1 z, 

(3c) c1 = Pi l /Pi, 

(3d) si = zi/P;, 

for j = 1, 2, ...,n - 1. (When j = I we define pO= zn.) If the last component of z 
is nonzero, P can be formed into the matrix 

71 Ulzn 

Or2zi 72 Or2zn 

U3z1 U3Z2 73 U3Zn 

*nl U~Z * Yna UaZ 

an_ Uz f On_ 1Z2 *yn-1 On-l Zn 

anzi '7nZ2 'nzn - 1 anzn 

where the elements a1 and yj are defined by the recurrence relations 

4(i) for j = 1, 2, ..., n - l define 

(4) a1 = s1/pi, 'yj =-c1; 

4(ii) define an = lPn l (= 1/IIzII)- ) 
[Note: We require zn # 0, but in general there may be z1 = 0 for j < n. For such j 
we define P, = I, a1 = 0, yj = 1, so the jth row and column of P will be unit vectors. 
Without loss of generality we may assume z1 # 0.] 
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Proof. We shall define 

and the partial product 

PtP_ * *P2P1 -Qt- 

The first t rows of Qt are unaffected by subsequent rotations Pt+ 1, .. Pn 
and so we can write 

T~~~ 

; P1 

enT_ 1 

Pt~~P 

T~~~ 

Using Eq. (1), the vector Qtz--Vt iS of the form 

(6) v =(,.... ,Z+ - nl'P) 

and since Qt iS orthogonal 

(7) z = Q =Tv t 

Substituting (5) and (6) into (7),we have 

t+1= zt 1 ? ptqt 

Z 

P-i 

T 
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giving 

T zl Z2 Z 
qt Pt (pt Pt 

p 0). - ... X ?,- 

At the (t + I)th stage, Qt is premultiplied by Pt+, giving the row pT as a linear com- 

bination of the two rows 

(0, 0, ... ,0, 1, 0, ... , 0, 0) 

(Z Z2 zt o, n... o ) 

Thus 

T ZlSt+ 1 z2st+l ztst+ 1 Znst+ 1\ 
Pt 

V Pt Pt ' -*'Pt ' t+l' ?'*-X-ptJ 

and if we define at+ 1 = St+ 1l/Pt and yt+ 1 = - ct+ 1, we have the required result. 0 
THEOREM Al (LQ FACTORIZATION OF AN ELEMENTARY MATRIX). Let A be a 

matrix of the form 

A= [ ] -Im+l ? ] 

where q is an m-vector. The matrix A has the LQ factorization A = LQ, where L is a 

special lower-triangular matrix and Q is an orthogonal matrix of the form 

a[T aj] Q4- aq a] 
Both M and N are special lower-triangular matrices defined by 

M= M(q, , 8), N =N(u, -q,y) =M1 =M - aqT 

where the vectors a, y, 6 and the scalar ot are generated by the following recurrence 

relations: 

8(i) define po = 1; 

8(ii) forj=1,2,...,mset 
2 2 2 

p1 = P_11 + q, 

(8) aj = - qj1(Pjpj_1), 

-yj =-Pj_iIPj I 
,yj- l/pi dpi 

8(iii) define a =llPm 

Proof (of Theorem A1). The LQ factors of A could be computed directly from 

the relation 
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where Q is a product of plane rotations designed to eliminate the elements of q one by 
one. However, we show now that Q may instead be constructed as a product of plane 
rotations such that 

(9) ] Pm 2 wem +1 

with 

(10) = (qTq + 1)1/2. 

(It turns out that this method is slightly more efficient, and it allows us to use Lemma 
Al to develop the structure of Q.) Let L be partitioned in the form 

~ M1 L=[ ] 

and suppose that in place of (9) and (10) we have 

Q [ ]= [:1 wTw ?+ X - q q + 1. 

Multiplying the relation L Q = A by [-7q] gives 

i.e. 

Ly w + aJ L1 
Since M must be nonsingular this gives w = 0, acw 1 and q2 = qTq ? 1. 

We have thus proved that Eqs. (9) and (10) are true. 
From Lemma Al we can therefore say that Q = Pm P2P1 is of the form 

,I r 
Q=[_T j 

,aw a_ 

where 
(i) N = N (a, - q, y) is a special lower-triangular matrix; 
(ii) the quantities a, y and a are obtained from the recurrence relations (3) and 

(4) by replacing z, a and n by [-q], [a] and m + 1, respectively; 
(iii) in particular, 

o 7m+l =1/|[1 (qTq + 1)-1/2 = 1/, 

which is consistent with the use of a in L above. 
Using (3) to eliminate cj and sj in (4) now gives the recurrence relations (8) for 

generating a, -y and a, and the structure of Q and N is determined. 

It remains to determine the structure of L and M. From the equation A = LQ 

it follows immediately that MJU = I, and hence the diagonals of M are the reciprocals 
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of those of N, i.e. M11 = I/y = 61. Next, the equation AQT = L readily gives the re- 
lation M - + qcT, and from the structure of N it follows that M. = qcr for i > j, 
and hence M is the special lower-triangular matrix M(q, a, 6). Finally, the equation 
A QT = L also gives y = a, which completes the structure of L. The theorem is now 
proved. O 

THEOREM A2 (LDV FACTORIZATION OF AN ELEMENTARY MATRIX). Let A be a 

matrix of the form 

A = D + pe;r, 

where p is an m-vector such that ps # 0 and D = diag(dl, d2, ... , dm) with d5 = 0 
and dj > Oforj = 1, 2, ...,s - 1, S + 1, ..., m. If ps is the first element of p such 
that IpsI > 0 and d5 = 0, then A has an LDV factorization A L LDV where 

P231 1 

P3f31 P332 1 

L psjl PSf2 pfi3 1 

Ps+1 1 Ps+112 Ps+113 Ps+ As 1 

Ps+231 Ps+232 Ps+233 Ps+2IPs 0 1 

. . . ... . *. 1. 

Pmgl PJf2 Pmf3 Pmfs 0 0 1 

- 32Pp1 -P232 a2 

-f33P1 -3P2 lp333 f3 

- fsP3 -sP2 PsP3 Ps 
0 0 01 

L 0 0 0.0 1 
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D=diag(dl, d, d .., d) = diag(dl, d2 s dsV ds+ 1 X***Xdm ) 

and the matrix (D+)1 /2 V(D+)- 1/2 is orthogonal. The vectors d and 3 are generated by 
the following recurrence relations: 

11(i) define to = 1; 

1 1(ii) for k = 1, 2, ... , s - 1 compute the following: 

if dk = 0 then set vk = 0 otherwise set vk = pk/dk, 

(11) tk = tk _1 + VkPk, 

dk = dktkltk- 1' 

Pk = Vk/tk; 

1 1 (iii) define d5 = p2/ts_ 1 and Ps = 1 /ps. 

Proof We shall prove this theorem in two stages. Firstly, we shall assume that 

ds is the only zero element of D and then consider the case where other d1 are zero 
(together with their associated p,). 

Consider the matrix As made up of the first s rows and columns of A. If A is 
partitioned as 

[D ( 1) 

A = Ps 

p(2) D2 

then As can be written as 

A= p:j (1= [I ]1[D 2 ][ q :[DI/2 ] 

= II (D+)1122ASD+)1/2 

where 

(12) A D[ and q= D-2p. 

From Theorem Al we know that As has the orthogonal factorization As =LSQS 
where Ls and Q5 are constructed from the quantities q, a, y, 6 and oa as shown. Let 
us define 

d( = dj.=d. 1.-ara/(6,dl 2), d12 

(13) oj = jj =1/6J, A =diag(51,62 6 S- J 

and e = (1, 1, .I. , 1)T. Using the notation of Theorem Al, we now have 
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A5 = [ pJ(D)1I2As D+)1I2 - ' D +)1/2T5 '-5(D+)1/2~ 'As [ (S)IAs(S ) I = (S)LSQS(D+II2 

where 

[i 1 F' 1 ~~~~M(q,u0, ) 1 

[ 14s+)l2L5=[ rs lL aT cj 

M(Pp, e)II 
[=(P~ f3, e) l(D+) I2A =L(1+)112AF 1 

(1 4a) _- pT [ PS Psj 

and 

N(a, - q, y) a 

!)-D+)1 /2 = _ T (Ds+)1/2 
-q _ 

I ~~~N(01 -POl), 0) {3 I 
= A(Ds+)1/2 'A (D+)l /2t V V (14b) LPsJ ( p(1) T /P I p Psg 

Combining (14a) and (14b) gives As = LDV where 

LPT 11 [ ()1)T I/p s 

and 

D = (DS)/I2A2(DS)I F 1= A DS+ 
(15) [ S L J_ 

- diag(d 6 22, d26, . , d5 s2- p2t2). 

Equations (1 4b) and (15) also give the orthogonal matrix QS as 

S e J 'A( +)112 (+) 1/2 = 1/2 1(+- /2 Q II (Ds)"V(Dst'/ Db"V(Dst"2 

We can now simplify the expressions for d1, 0, and O1 in (13). From the defini- 
tions of p1, ai, 6, and q1 in (8) and (12) we have 

2 2 + q2 = p2 + p P1 = p j 1 = _ ?pi 7d 1; 

d d1./,yj = d1pj/Pf1 
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i3 = a2ys/dJ/2 - q,/(p3dl/2) = pi/lpJd1); 

01 = = 2 
J/p3= (pj -pJ/d1)/p = 1 -3p/(p3d1) = 1 -p.:j. 

From 8(iii) we also have a2 = 1/p2 1. Since all these expressions require p1 rather 
than p,, we can define t, = p and avoid the computation of all square roots. 

If we now consider the factorization of the complete matrix D + peT, we must 

have 

[L j[D D [V I 

where Y is a matrix to be determined. If the factors of the last expression are multi- 
plied out and right- and left-hand sides are equated, we have p(2)esT = YDV, where eT 

is the last row of the sth-order identity matrix. Multiplying both sides by (D+)- 1 PT 
and noting that V(Ds)-' VT = D-1, since l2 V(Ds+)-12 is orthogonal, we have 

p(2)eT(Ds vT Y YV(D S+- YVT . =. 

Consequently, since 

eT(D)-' =eT and eTVT= [T 1] 

we have 

Y= p(2) [T P;] 

If we define Os = Il/p, this completes the proof in the case where d1 > 0 for j = 1, 
2,...,s-l,s+ l,... ,m. 

If A has k rows and columns equal to zero (that is d1 = 0 corresponding to 
p1 = 0), we can apply the method just described to the matrix of m - k remaining 
rows and columns and regard the LDV factors so obtained as being of order m by in- 
serting suitable rows and columns of the identity matrix. This gives the recurrence 
relations (11). El 

COROLLARY. Let A be a matrix of the form 

A=D+?[0]e+E [Di P] 

where p is an m-vector and 

Di 
D = diag(dl, d2,* dm, 1)- [ ] 

with D1 positive definite. The matrix A has an LDV factorization A = LDV where 

[M } d N )[ 
L 

= | |, 
D = diag(dl, d2, ....... , dm, of2) .. V=|, 
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and the matrix Db/2 VD-2 is orthogonal. Both M and N are special lower-triangular 
matrices defined by 

M = M(p, 3), N = N(3, - p, 0) = MT4pT, 

where the vectors d, 3, 0 and the scalar a02 are generated by the following recurrence 
relations: 

16(i) define to = 1; 

16(ii) for j = 1,2, .2 . , m set 

t tj-1 pJ/d1, 

(16) di ditltj_1, 

gj pil(djtj) , 

0. = 1 - P*I:* oiI 
- 

i0; 

16(iii) define a2 = 1/tm. O 

LEMMA A2. Let z be an n-vector and P an orthogonal matrix such that 

(17) Pz = IIzIIen. 

In particular, let P be the product of plane rotations P = P1P2 ... Pn - 1, where each 

P, is the form given in Lemma Al. Equation (17) holds if the element c1 and s1 de- 
fining Pi are such that 

Si Cj FPi+ 2_1 

where 

(18) P2=P2 +Z32 jP+/P j lP 

for j = n - 1, n - 2, ..., 1. (When j = n - 1 we define pn = Zn) If the last com- 

ponent of z is nonzero, P can be formed into the matrix 

71 a1Z2 a1 Z3 Zn 

2 c2Z3 cJ2Zn 

'yn-2 'gn-2Zn-1 0gn-2Zn 

'Yn-1 on-1nZ 

nz1 aGnZ2 '9nZ3 agnzn-1 agnzn 

where the elements a, and y, are defined by the recurrence relations 
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19(i) for j = n - 1, n - 2, ..., defne 

(19) a = s/p1 1, y1=-ci; 

19(ii) define a,n l/p1 (-lI/IzIl). 

[Note: As in Lemma Al, we require zn #0; but if Zj = 0 for j < n, we define P =I, 
=0, y = 1.1 

Proof. This lemma is proved in a similar way to Lemma Al. C 

THEOREM A3 (LQ FACTORIZATION OF AN ELEMENTARY MATRIX). Let A be an 

(m + 1) x (m + 1) matrix of the form A = Im + qq, where q = [qI, with a a 

scalar (a * 0) and llq 11 = 1. The matrix A has the LQ factorization A=LQ, where L 

is a special lower-triangular matrix and Q is an orthogonal matrix of the form 

[aUT oi [qT a] 

The matrix M = M(q, a, 'y) is a special lower-triangular matrix with the vectors a and 

y defined by the following recurrence relations: 

20(i) define Pm + 1 = a; 

20(ii) for j = m, m - 1,..., 1 set 

(20) piP= +i + 2qi 

pi+11= ai qil(;pi 1Pi), 

'rj= Pj+ l/Pj / 

Proof. We shall obtain the LQ factorization of A by construction. Let Q be the 

orthogonal matrix Q = P1P2 - P * m constructed as in Lemma A2 such that 

(21) U4 = Iqjljem+I = em+I' 

Replacing z, a afid n by [qI, [u2 Ii and m + 1, respectively, we see from Lemma 

A2 that Q may be partitioned in the form 

[a '7qT ]t am+ Q- 

?*+lq 
T 

+l(x 

where M = M(q, a, y). From 19(ii) we have am + 1 = l/llqll = 1, and using (18) to 

eliminate cj and sj from (19) gives the recurrence relations stated in (20). 
To obtain L we use Eq. (21) and the fact that Q is orthogonal. Thus 

A A Q Q = (Im + 1 q4qT)QTQ = (Q T 
qem + 1 )Q 

as([ -qem+l Q T Q -LQ, 

as required. fO 
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THEOREM A4 (LDV FACTORIZATION OF AN ELEMENTARY MATRIX). Let A be a 
matrix of the form 

A =D [J[pT a2], 

where p is an m-vector, a i and a2 are nonzero scalars, 

[Di 
D = diag(dlm, . a2J 

and 

ID-1/2[] pTD-lp = 1. 

1 

The matrix A has an LDV factorization A = LDV where 

(22) L 01, D=diag(dj,d2, ...,d,1), V [=iT ] 

g2BT OJ LPT 2 

and thematrixDb'2V1Y112 is orthogonal. The matrix M =M(p, 3) is a special lower- 
triangular matrix and the vectors d, and ,B are generated by the following recurrence 
relations: 

23(i) define tm + 1 =2/a2 

23(ii) for j = m, m - 1, ..., I set 

(23) tj = t1i +pi,/d, 

di = djtj+ 1 Itj, 

gi= pil(diti+ 1), 

Proof. The matrix to be factorized can be written as 

A=D ][[P a] =Dp1 2(Im + - TjD1j/2 D/2AD1/2 

where 

(24) q=D 
I- p, a=a2/a,,l I I AI=m+j-qfT 

The requirement pTDp lp ? a2/a1 = 1 ensures that qTq ? a2 = 114112 = 1; and hence 

we know from Theorem A3 that A has the orthogonal factorization A = LQ, where 
L and Q are constructed from the quantities q, a, -y and a as shown. Let us define 

(25) Sj~ = d' /2zj d- =,2 p 6 =d 'y. di.6, e( 
A =diag(6,,61 2,. 6m I1), e=(1, 1,...,I1)TJ 
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Using the notation of Theorem A3 we now have 

A = D1 2AD112 (D12L)QD 

where 

-M(/2 O] U( Y) 1 [M(p,u,8) 01 
oiL ci oJT [ t oa1uT 

[( M,q) a1 1FM(p, q, e) l 

[26a) q a iT aJT L = 

and 

M(q, -b")T /29 "T qT pT 

Combining (26a) and (26b) gives A nDV where L and V ar( whe matrices defined in 

(22), and 

D = 'A2 = diag(52l, 82, . ,2 , 1) = diag(d- , ***,dm ) 

f3 1/( d211) -q/p dJ'2) pIAid 1). 

Equation (26b) also gives the orthogonal matrix Q as 

-Q = 'A^ -1/2 = f)1/2 
^ 

-1/2 

as required. 

Using the definitions of p,, aj,, y and q, in (20) and (24), we can now simplify 

the expressions for d, and 0,B in (25) as follows: 

dj =djy;, dIj+l 1/; 

oj = _7dl /2) qjl(pi2 ld' /2) = 
2 

j/* 1di). 

From 20(i) we also have P2 -- a 2 = az2/ae2 . Finally, as in Theorem A2, we define 

t = pj2 to avoid the computation of square roots. The recurrence relations (23) now 

follow and the theorem is proved. O 

LEMMA A3 (CHOLESKY FACTORS OF D1 + ppT). If p is an m-vector and D1 

diag(d1, d2, ..., dm) where di > 0, the Cholesky factorization of D1 + ppT is 

(27a) D + ppT = MD2MT, 

where 

D2 = diag(d1 d2, ...M,d) M=M(p,f), 

with 
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(27b) MD23 = P 

(27c) pTD2, = 1 - a2 > O. 

The quantities d1, 01 and a2 are given by the recurrence relations (12). 
Proof. Using the notation and results of Theorem A2,we can write down the 

LDV factorization 

(28) [ = LDV. 
_ 1J 

If 

[D2 a2] Q- 1/2V11/2, D =[ D=| J Q D DlVD 12 

then the matrix Q is orthogonal. Post-multiplying (28) by D-12 gives 

1 [DI/2 j =LbDV 2112- ' 

and since T = I we have 

j/2 pD/2 ] TLLT [M ]jD2 jIM I 

Hence 

D1 +ppT P1 F MD2MT MD2 
1 

pT I OJ[P TD MT ,TD ? a2 

and relations (27) follow immediately. El 
LEMMA A4 (CHOLESKY FACTORS OF D1 - ppT). If p is an m-vector, Di 

diag(d ,d2, ... ., dm) where d > O and a2 = 1 pTDj lp > 0, the Cholesky factor- 
ization of D1 ppT is 

(29a) D1 ppT =MD2mT 

where 

D2 =diag(dl, d2,*- dm), M=M(p, 3), 

with 

(29b) MD23=- PI 

(29c) PTD2 = 1/a2 - 1 > 0. 

The quantities d1 and piare defined by the recurrence relations (23), with 23(i) replaced 
bytm+i =a2. 

Proof. Using the notation and results of Theorem A4, we have a2 = a2/Ct2 and 
the LDV factorization 
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L 2]J[J[P a2] =LDV(=LDL)L T OI JT J 

Hence 

rD - 2 2P MD2M 2MD2p 

la2p aP 1 at2 - 320TD2MT a23TD2Ij 

and relations (29) follow immediately. O 
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